Copied to
clipboard

G = C52⋊(C3⋊S3)  order 450 = 2·32·52

The semidirect product of C52 and C3⋊S3 acting via C3⋊S3/C3=S3

non-abelian, soluble, monomial, A-group

Aliases: C52⋊(C3⋊S3), C3⋊(C52⋊S3), (C5×C15)⋊1S3, C52⋊C31S3, (C3×C52⋊C3)⋊2C2, SmallGroup(450,21)

Series: Derived Chief Lower central Upper central

C1C52C3×C52⋊C3 — C52⋊(C3⋊S3)
C1C52C5×C15C3×C52⋊C3 — C52⋊(C3⋊S3)
C3×C52⋊C3 — C52⋊(C3⋊S3)
C1

Generators and relations for C52⋊(C3⋊S3)
 G = < a,b,c,d,e | a5=b5=c3=d3=e2=1, ab=ba, ac=ca, dad-1=ab3, ae=ea, bc=cb, dbd-1=a-1b3, ebe=a-1b-1, cd=dc, ece=c-1, ede=d-1 >

45C2
25C3
25C3
25C3
3C5
3C5
15S3
75S3
75S3
75S3
25C32
9D5
45C10
3C15
3C15
25C3⋊S3
3D15
15C5×S3
9C5×D5
3C52⋊S3
3C5×D15
3C52⋊S3
3C52⋊S3

Character table of C52⋊(C3⋊S3)

 class 123A3B3C3D5A5B5C5D5E5F10A10B10C10D15A15B15C15D15E15F15G15H
 size 14525050503333664545454566666666
ρ1111111111111111111111111    trivial
ρ21-11111111111-1-1-1-111111111    linear of order 2
ρ320-1-12-12222220000-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ4202-1-1-1222222000022222222    orthogonal lifted from S3
ρ520-12-1-12222220000-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ620-1-1-122222220000-1-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ73-13000ζ54+2ζ53525ζ53+2ζ554521-5/21+5/255352545452ζ54+2ζ53525ζ53+2ζ51+5/21-5/21+5/21-5/2    complex lifted from C52⋊S3
ρ8313000ζ54+2ζ53525ζ53+2ζ554521-5/21+5/2ζ5ζ53ζ52ζ545452ζ54+2ζ53525ζ53+2ζ51+5/21-5/21+5/21-5/2    complex lifted from C52⋊S3
ρ9313000ζ53+2ζ55452525ζ54+2ζ531+5/21-5/2ζ52ζ5ζ54ζ53ζ54+2ζ53ζ53+2ζ554525251-5/21+5/21-5/21+5/2    complex lifted from C52⋊S3
ρ103130005452ζ53+2ζ5ζ54+2ζ535251+5/21-5/2ζ53ζ54ζ5ζ525255452ζ53+2ζ5ζ54+2ζ531-5/21+5/21-5/21+5/2    complex lifted from C52⋊S3
ρ11313000525ζ54+2ζ535452ζ53+2ζ51-5/21+5/2ζ54ζ52ζ53ζ5ζ53+2ζ5525ζ54+2ζ5354521+5/21-5/21+5/21-5/2    complex lifted from C52⋊S3
ρ123-13000ζ53+2ζ55452525ζ54+2ζ531+5/21-5/25255453ζ54+2ζ53ζ53+2ζ554525251-5/21+5/21-5/21+5/2    complex lifted from C52⋊S3
ρ133-130005452ζ53+2ζ5ζ54+2ζ535251+5/21-5/253545525255452ζ53+2ζ5ζ54+2ζ531-5/21+5/21-5/21+5/2    complex lifted from C52⋊S3
ρ143-13000525ζ54+2ζ535452ζ53+2ζ51-5/21+5/25452535ζ53+2ζ5525ζ54+2ζ5354521+5/21-5/21+5/21-5/2    complex lifted from C52⋊S3
ρ156060001+51+51-51-5-3-5/2-3+5/200001-51+51+51-5-3+5/2-3-5/2-3+5/2-3-5/2    orthogonal lifted from C52⋊S3
ρ1660-30001-51-51+51+5-3+5/2-3-5/20000-1-5/2-1+5/2-1+5/2-1-5/2-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452    orthogonal faithful
ρ1760-30001+51+51-51-5-3-5/2-3+5/20000-1+5/2-1-5/2-1-5/2-1+5/2-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525    orthogonal faithful
ρ186060001-51-51+51+5-3+5/2-3-5/200001+51-51-51+5-3-5/2-3+5/2-3-5/2-3+5/2    orthogonal lifted from C52⋊S3
ρ1960-30001+51+51-51-5-3-5/2-3+5/20000-1+5/2-1-5/2-1-5/2-1+5/2-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53    orthogonal faithful
ρ2060-30001-51-51+51+5-3+5/2-3-5/20000-1-5/2-1+5/2-1+5/2-1-5/2ζ3ζ53-3ζ3ζ52-2ζ3ζ53-2ζ525-3ζ3ζ54-2ζ3ζ523ζ53-2ζ5452-2ζ3ζ54-3ζ3ζ533ζ52354-2ζ53-3ζ32ζ54-2ζ32ζ5232ζ532-2ζ5452    orthogonal faithful
ρ2160-300054+4ζ5352+2ζ553+4ζ554+2ζ521-51+50000-2ζ545254-2ζ53-2ζ52553-2ζ5-1-5/2-1+5/2-1-5/2-1+5/2    complex faithful
ρ2260-300054+2ζ5253+4ζ554+4ζ5352+2ζ51+51-50000-2ζ525-2ζ545253-2ζ554-2ζ53-1+5/2-1-5/2-1+5/2-1-5/2    complex faithful
ρ2360-300052+2ζ554+4ζ5354+2ζ5253+4ζ51-51+5000053-2ζ5-2ζ52554-2ζ53-2ζ5452-1-5/2-1+5/2-1-5/2-1+5/2    complex faithful
ρ2460-300053+4ζ554+2ζ5252+2ζ554+4ζ531+51-5000054-2ζ5353-2ζ5-2ζ5452-2ζ525-1+5/2-1-5/2-1+5/2-1-5/2    complex faithful

Smallest permutation representation of C52⋊(C3⋊S3)
On 45 points
Generators in S45
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)
(1 3 5 2 4)(6 8 10 7 9)(11 13 15 12 14)(31 35 34 33 32)(36 40 39 38 37)(41 45 44 43 42)
(1 13 8)(2 14 9)(3 15 10)(4 11 6)(5 12 7)(16 26 21)(17 27 22)(18 28 23)(19 29 24)(20 30 25)(31 41 36)(32 42 37)(33 43 38)(34 44 39)(35 45 40)
(1 19 34)(2 17 32)(3 20 35)(4 18 33)(5 16 31)(6 23 38)(7 21 36)(8 24 39)(9 22 37)(10 25 40)(11 28 43)(12 26 41)(13 29 44)(14 27 42)(15 30 45)
(6 11)(7 12)(8 13)(9 14)(10 15)(16 31)(17 32)(18 33)(19 34)(20 35)(21 41)(22 42)(23 43)(24 44)(25 45)(26 36)(27 37)(28 38)(29 39)(30 40)

G:=sub<Sym(45)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14)(31,35,34,33,32)(36,40,39,38,37)(41,45,44,43,42), (1,13,8)(2,14,9)(3,15,10)(4,11,6)(5,12,7)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,19,34)(2,17,32)(3,20,35)(4,18,33)(5,16,31)(6,23,38)(7,21,36)(8,24,39)(9,22,37)(10,25,40)(11,28,43)(12,26,41)(13,29,44)(14,27,42)(15,30,45), (6,11)(7,12)(8,13)(9,14)(10,15)(16,31)(17,32)(18,33)(19,34)(20,35)(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45), (1,3,5,2,4)(6,8,10,7,9)(11,13,15,12,14)(31,35,34,33,32)(36,40,39,38,37)(41,45,44,43,42), (1,13,8)(2,14,9)(3,15,10)(4,11,6)(5,12,7)(16,26,21)(17,27,22)(18,28,23)(19,29,24)(20,30,25)(31,41,36)(32,42,37)(33,43,38)(34,44,39)(35,45,40), (1,19,34)(2,17,32)(3,20,35)(4,18,33)(5,16,31)(6,23,38)(7,21,36)(8,24,39)(9,22,37)(10,25,40)(11,28,43)(12,26,41)(13,29,44)(14,27,42)(15,30,45), (6,11)(7,12)(8,13)(9,14)(10,15)(16,31)(17,32)(18,33)(19,34)(20,35)(21,41)(22,42)(23,43)(24,44)(25,45)(26,36)(27,37)(28,38)(29,39)(30,40) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45)], [(1,3,5,2,4),(6,8,10,7,9),(11,13,15,12,14),(31,35,34,33,32),(36,40,39,38,37),(41,45,44,43,42)], [(1,13,8),(2,14,9),(3,15,10),(4,11,6),(5,12,7),(16,26,21),(17,27,22),(18,28,23),(19,29,24),(20,30,25),(31,41,36),(32,42,37),(33,43,38),(34,44,39),(35,45,40)], [(1,19,34),(2,17,32),(3,20,35),(4,18,33),(5,16,31),(6,23,38),(7,21,36),(8,24,39),(9,22,37),(10,25,40),(11,28,43),(12,26,41),(13,29,44),(14,27,42),(15,30,45)], [(6,11),(7,12),(8,13),(9,14),(10,15),(16,31),(17,32),(18,33),(19,34),(20,35),(21,41),(22,42),(23,43),(24,44),(25,45),(26,36),(27,37),(28,38),(29,39),(30,40)]])

Matrix representation of C52⋊(C3⋊S3) in GL5(𝔽31)

10000
01000
00200
00040
00004
,
10000
01000
00400
00010
00008
,
2930000
31000
00100
00010
00001
,
10000
01000
00001
00100
00010
,
3030000
01000
00100
00001
00010

G:=sub<GL(5,GF(31))| [1,0,0,0,0,0,1,0,0,0,0,0,2,0,0,0,0,0,4,0,0,0,0,0,4],[1,0,0,0,0,0,1,0,0,0,0,0,4,0,0,0,0,0,1,0,0,0,0,0,8],[29,3,0,0,0,30,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0,0],[30,0,0,0,0,30,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,1,0] >;

C52⋊(C3⋊S3) in GAP, Magma, Sage, TeX

C_5^2\rtimes (C_3\rtimes S_3)
% in TeX

G:=Group("C5^2:(C3:S3)");
// GroupNames label

G:=SmallGroup(450,21);
// by ID

G=gap.SmallGroup(450,21);
# by ID

G:=PCGroup([5,-2,-3,-3,-5,5,41,182,2888,10804,4284]);
// Polycyclic

G:=Group<a,b,c,d,e|a^5=b^5=c^3=d^3=e^2=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^3,a*e=e*a,b*c=c*b,d*b*d^-1=a^-1*b^3,e*b*e=a^-1*b^-1,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

Export

Subgroup lattice of C52⋊(C3⋊S3) in TeX
Character table of C52⋊(C3⋊S3) in TeX

׿
×
𝔽